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The Human Hand

The hand is fundamental to 
sensorimotor development. 

The sensory machinery of the 
hand allows to extract detailed 
knowledge about the environment 
we interact with. 

The unique versatility of the hand 
motor system enables highly 
dexterous control of a large 
repertoire of movements.



Why study the hand?

The complex neural and 
biomechanical architecture of 
the hand makes it an ideal 
model to study fundamental 
issues in neuroscience, such 
as:

• sensorimotor transformations

• neuroprosthetics, robotics

• learning and control of  
complex movements

• neuroplasticity



The Human Hand: Biomechanics

27 bones



extrinsic

intrinsic

Motor system
35 muscles



• Large number of joints and 
muscles, some of  which cross 
more than one joint

Implications for control:

• Large number of control variables = 
large ‘computational load’ on the 
CNS

• Activation of a given muscle will 
generate motion at more than one 
joint



• Connections among tendons of 
finger flexor and extensors

Implications for control:

• Tension generated by the 
activation of a muscle inserting into 
one digit will be passively trans-
mitted to the tendons inserting into 
adjacent digits

• Producing independent finger 
movement or force requires the 
ability to limit such ‘spill-over’ of 
tension to non-instructed digits



The Human Hand: Neural Control

Somatotopical organization of motor and sensory cortex



However, anatomical and physiological 
evidence indicate that the cortical 
representation of hand muscles in M1 is not
somatotopically organized.  

Cortical territories in M1 occupied by cortico-
motoneuronal cells for different thumb and 
finger muscles overlap extensively (e.g., 
Schieber and Hibbard 1993; Rathelot and 
Strick 2006).



• Output projections of 
single cortical neurons 
often diverge to innervate 
the motor neuron pool of 
more than one muscle.

• Outputs of large 
territories of the motor 
cortex converge on the 
spinal motor neuron pool 
of any given hand muscle

Motor cortex Spinal motor 
neurons

Muscles



Sensory system

Mechanical stimuli are encoded by tactile afferents 
that differ in their sensitivity to specific aspects of the 
stimuli.



Johansson and Westling (1987)

Tactile input about micro-slips trigger very fast upgrades in the 
ratio between grip and load forces. 

Besides its ‘online correction’ functions, tactile input allows to 
build ‘sensorimotor memories’ for anticipatory control of 
grasping.



Neural control of hand muscles

Common Neural Input
Motor unit synchrony 

EMG-EMG coherence



Coordination of single motor unit 
activity during grasping

Motor units are 
the basic unit of 
force control.  
Force 
modulation can 
be attained by 
recruiting a
variable number of motor units and/or 
increasing their firing rates.



One of the neural mechanisms that might 
contribute to the coordination of forces during 
grasping is motor unit synchrony.  

A generally accepted view is that short-term 
synchrony of active motor units is an indirect 
measure of common synaptic input across 
motoneurons.

Sears and Stagg, J. Physiol. (1976) 
Kirkwood and Sears, J. Neurosci. Meth. (1978)  

Nordstrom et al. J. Physiol. (1992)
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Single motor unit activity
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Quantification of 
correlated motor unit activity
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Correlated motor unit activity within the 
same muscle is a measure of how the 
activity of many motor units of a given 
muscle might be coordinated under 
certain conditions (e.g., isometric vs. 
eccentric contractions) or as a result of 
training (dexterity, strength, etc.).

e.g. Semmler et al., J. Neurophys. (2004)



Synchronous activity can also occur 
across different muscles. 

This type of synchrony (across-muscle) 
might play an important role for 
coordinating the activity of different 
muscles, e.g., flexor muscles of the the 
thumb and index finger.
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• Synchronous or near-synchronous discharges 
of motor units innervating different hand 
muscles/muscle compartments contributes to 
‘spill-over’ of tension during individuated finger 
movements1.

mn2
mn1

Keen and Fuglevand (2004); Reilly et al. (2004)



Correlations of neural activity

Correlation analysis of motor neuron activity 
has been used to determine the organization 
and connections of neurons that are 
otherwise inaccessible or difficult to record 
(Perkel et al. 1967).
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Correlation Analysis in the time domain

Correlation functions describe the dependence between two 
signals, x and y.  By representing spike trains by values of 1 at 
times of spike occurrence and 0 at other times, RYX(τ) is non-
zero when spikes occur in both trains at an interval of τ.  The 
cross-correlation histogram results from summations of the 
number of spikes in the two trains within a given time interval.

RYX(τ) = (1/T)∫ y(t)x(t - τ)dt

X

Y
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Correlation analysis in the frequency domain

Coherence is a measure used to determine the linear relation 
between two signals in the frequency domain.  Similar to the 
coefficient of determination (r2) in linear statistics, the magnitude 
of coherence at a given frequency is bounded by 0 and 1, 
indicating that no linear relationship and a perfect linear 
relationship, respectively, exists at that frequency. 

fxy : cross-spectrum
fxx , fyy : auto-spectra

sig(α) = 1-(1-α)1/(L-1)

|Rxy(λ)|2 = |fxy(λ)|2 / (fxx(λ)fyy(λ)) 
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Vectorial representation and analysis of 
muscle activation patterns
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EMG-EMG coherence analysis

Twelve EMG signals results in 66 muscle pair combinations. 
We performed coherence analyses on: 

• all 66 muscle pairs combined
- across the entire frequency spectrum (0-55 Hz)
- at separate frequency bands (0-5, 6-15, 16-35, 36-55 Hz), 

each band being associated with specific neural 
mechanisms (Brown, 2000).

• on three sub-groups of muscle pairs (extrinsic-extrinsic, 
intrinsic-intrinsic, intrinsic-extrinsic)

Computation of EMG-EMG coherence was performed on un-
rectified EMG that passed the stationarity test (>94% of the 
data) by using non-overlapping data segments at a 
frequency bin resolution of 1 Hz. 
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The MAP vector length 
increased with force

The degree of similarity between MAP vectors 
depended on the proximity between target forces. 
Nevertheless, a strong similarity between vectors was 
found throughout the entire force range (r > 0.94).
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C10 > C9, C7, C6, C5, C4, C3, C2
C8, C1 > C7, C6, C4, C3
C5 > C7, C4

All p < 0.05



Pooled coherence as a function of force
(66 muscle pairs)
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vector 1 vector 2 vector 1 vector 2 vector 1 vector 2 vector 1 vector 2
s1 802.30 294.40 294.40 802.30 802.30 294.40 294.40 802.30
s2 784.73 103.10 784.73 103.10 103.10 784.73 103.10 784.73
s3 667.40 168.00 168.00 667.40 667.40 168.00 168.00 667.40
s4 671.00 315.80 671.00 315.80 671.00 315.80 315.80 671.00
s5 511.40 182.70 182.70 511.40 511.40 182.70 182.70 511.40
s6 699.60 119.80 699.60 119.80 699.60 119.80 119.80 699.60
s7 388.10 163.10 163.10 388.10 163.10 388.10 163.10 388.10
s8 321.40 410.40 321.40 410.40 321.40 410.40 410.40 321.40

T = −386.08 x1= 4.17 x2= -159.42 x256= 386.08
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EMG-EMG coherence from each muscle pair 
(5% vs. 80% MVC). 
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Coherence pooled across all muscle pairs (66) or within each muscle 
group (3) was not significantly different between 5 and 80% MVC. 
However, extrinsic muscle pairs exhibited significantly stronger 

coherence than intrinsic and intrinsic-extrinsic muscle pairs.
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Conclusions

• The results of our EMG amplitude analyses extend and 
confirm previous work on single digit force production 
tasks by revealing a high degree of similarity in EMG 
coordination pattern vectors across a wide range of 
sub-maximal forces.

• The results of EMG-EMG coherence are consistent with 
the results of EMG amplitude analyses by showing that 
the strength of correlated input to multiple hand 
muscles is invariant across force levels. 

Together, these findings point to a force-independent 
mechanism responsible for coordinating the 
simultaneous activity of multiple hand muscles.



• Although the strength of correlated input to hand 
muscles remained constant across force levels, its 
distribution was heterogenous as indicated by the 
strongest correlation among extrinsic muscle pairs.

• These results are consistent with – and extend - the 
results we obtained from single motor unit studies 
recorded at ~5% MVC during object hold (Winges et al., 
2004, 2008). As such, the present EMG-EMG coherence 
results further point to a functional/anatomical 
gradient underlying the distribution of correlated 
neural input to motor nuclei of hand muscles.



Learning Object Grasping and 
Manipulation

Anticipatory Grasp Control
Sensorimotor memories

Control of digit forces and positions



Background

The ability to anticipate object center of mass location allows to 
predict digit forces necessary to counteract the external torque on the 
object1. The results of two studies from our laboratory on anticipatory
control of digit placement revealed that subjects

• implement anticipatory force control mechanisms in parallel with 
careful selection of digit placement2

• are able to use explicit cues about CM location for the 
modulation of digit placement but not forces, suggesting the 
existence of independent sensorimotor memories for these two 
variables3

1 Salimi et al., Exp Br Res (2000, 2003); 
2 Lukos et al., J Neurosci (2007)
3 Lukos et al., J Neurosci (2008)Jamie LukosCaterina Ansuini



400g

Task
We asked subjects to reach, grasp, lift and replace with their right 
hand a T-shaped object. The center of mass of the object was 
changed either in a trial-to-trial fashion or across blocks of trials

(predictable and unpredictable condition, 
respectively) by adding a mass in one of 
three slots at the base of the object. 

The only task requirement was to minimize 
object roll during the lift.

We hypothesized that a priori knowledge of CM location would 
allow subject to predict the appropriate forces and distribution of 
digit placement to counteract the external torque.

The unpredictable condition was used to determine the strategy 
that would be used when CM could not be anticipated.
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Cues did not allow subjects to minimize object roll in the random 
condition to the same extent as in the blocked condition (p < 0.05).



Conclusions (Background) 

As subjects perform consecutive trials of object 
manipulation (procedural learning) they implement 
anticipatory force mechanisms in parallel with careful 
selection of digit placement (Lukos et al., 2007).

In contrast, a differential effect on anticipatory control 
of grasp kinematics vs. kinetics was found when 
subjects were provided with arbitrary cues about 
object CM location. 



Consistent with work on two-digit grasping (Turrell et
al. 1999; Flanagan and Beltzner 2000;  Salimi et al.
2003), our data suggests that non-consecutive
(random) practice of object manipulation interferes
with the information provided by cues for retrieval of
sensorimotor memories of digit forces.  

The effectiveness of cues in anticipating contact
points in the random condition, however, indicates
that sensorimotor memories of digit positions are
not biased by having sensed a different object
property in the previous trial.



Anticipatory Coordination of 
Grasp Positions and Forces for 

Dexterous Two-Digit Manipulation

Qiushi Fu Wei Zhang



Dexterous object manipulation requires accurate anticipatory distributions 
of digit positions and forces.  However, grasping studies have focused 
either on hand kinematics or kinetics. Therefore, how humans learn to 
coordinate these two variables has not been studied.  

PC1 min PC1 max

PC2 max

PC2 min

Avg posture

Santello, Flanders and Soechting, J Neurosci (1998)
Santello, Flanders and Soechting, J Neurosci (2002)

Latash and Zatsiorsky, Adv Med Exp Biol (2009)
Smeets and Brenner, Motor Control (1999)



In experimental tasks that force digit placement on fixed 
locations on the object, subjects position their digits on the 
same locations on every trial and control digit forces in an 
anticipatory fashion by using sensorimotor memories from 
previous trials.  

Thumb

Index

Middle

Ring

Little

Rearick, Casares and Santello
J Neurophysiol (2002)

Westling and Johansson, Exp Br Res (1984)
Johansson and Flanagan, Nat Rev Neurosci (2009)



However, when digit position is not constrained by the 
experimenter, digit placement may vary from trial to trial due to 
variability in fingertip trajectories during the reach.  

Therefore, the question arises as to whether learning of object 
manipulation is attained through (a) the accurate trial-to-trial 
reproduction of digit placement, hence forces, or (b) whether 
force modulation relies on the integration of sensorimotor
memories and sensing of digit position.



Experimental setup: Grip device
(two-digit grasping)

We designed and built a device to 

(a) measure forces and torques exerted by one digit on 
either side of the object, and 

(b) compute the digit center of pressure.





Experimental task 
We asked subjects to:

• grasp the object with the 
thumb and index finger

• lift the object while 
preventing it from rolling 

• hold the object and replace it



Experimental variables
As we focused on the anticipatory 
component of grasp control, we 
analyzed the following variables at 
the object lift onset (b):

• normal and tangential forces
exerted by thumb and index finger

• thumb and index finger center of 
pressure (CoP)

• normal and tangential 
components of the digits’ net 
moment

To quantify performance, we also 
measured peak object roll during 
lift.



Task mechanics
Attainment of successful object roll minimization can be described as the 
subjects’ ability to generate a compensatory moment (Mcom) on the object 
at object lift onset that is of equal magnitude and opposite direction to that 
of the external moment (Mext = Fl) caused by added mass about the center 
of mass of the unloaded object (CMw and CM0, respectively). 

Mext

Mcom

Mext = ±255 Nmm



zzyycom FyyFyyFwFwM 20210121 )()(
22

+−++−=

Perfect anticipation at object lift onset: Mcom = −Mext

(1)

Fiy = load force, Fix = normal force
i = 1, thumb; 2, index finger



Perfect anticipation at object lift onset: Mcom = −Mext
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Coordination of digit placement and forces
Trial 1



Coordination of digit placement and forces
Trial 5



Compensatory moment and grasp performance 
as a function of trial (1 subject)



Subjects learn to minimize object roll within 
the first 3 lifts

3 subjects

** p < 0.01



Subjects change the distance between the digit 
centers of pressure as a function of trial and 

object CM location

CM × Trial interaction on dy, p < 0.01
Trial 1 ≠ Trial 2 through 10, right and left CM



Subjects change the digit load force distribution 
as a function of trial and object CM location

CM × Trial interaction on dLF, p < 0.01
Trial 1 ≠ Trial 2 through 10, right and left CM



The modulation of the vertical distance 
between the digits’ CoP played a major role in 

the moment generated by grip forces  

The trial-to-trial variability of MGF was associated with trial-to-
trial variability in the relative position of the digits.

r-value > 0.8, p < 0.05 (88% of regressions) 
Trials 4 through 10

Right CM
Left CM



Trial-to-trial fluctuations in the moment 
generated by grip forces was not due to 

systematic modulation of grip forces

This data suggests that variability in digit positions affected the 
trial-to-trial repeatability of MGF more than variability in grip 
forces.

r-value ± 0.6, p > 0.05 (79% of regressions) 
Trials 4 through 10

Right CM
Left CM



Subjects were able to generate similar compensatory 
moments despite relatively large across-trial variability 
in both CoP and load forces. How was this attained?
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We found a negative covariation between MGF (i.e., primarily dy) and 
MLF (dLF), such that

μ = σ(MLF−MGF) > σ(MLF+MGF) (p < 0.001)

Therefore, the trial-to-trial variability of the compensatory moment was 
significantly smaller than the trial-to-trial variability of either moment 
component. This implies that digit forces modulation was 
dependent not only on sensorimotor memories of prior trial(s) 
but also on actual digit position. 



The sensorimotor processes revealed by the present 
study might account for our fundamental ability to 
manipulate objects despite variable digit positions in 
everyday grasping and tool use. 

We propose that learning and performance of 
skilled object manipulation both require integration of 
digit position sensing with sensorimorimotor 
memories to select forces necessary to generate a 
given object dynamics.



Conclusions, Study #1

Our data suggest that subjects learned anticipatory 
grasp control by integrating sensorimotor memories 
from previous trials with feedback-driven corrections. 



A theoretical framework that accounts for our results is as 
follows:

• digit positions and forces are learned in parallel, hence 
generating a memory representation of both variables 
combined

• the initial digit placement is driven primarily by online 
vision and sensorimotor memories from previous trials

• after contact, a comparison is made between expected 
(desired) vs. actual feedback of digit placement

• a mismatch would trigger a change in the planned 
digit forces and possibly update sensorimotor
memories. 



We propose that the sensorimotor processes 
revealed by the present study might account for our 
fundamental ability to manipulate objects despite 
variable digit positions in everyday grasping and tool 
use.  

Further work is needed to test the extent to which our 
model can be generalized to a wider variety of 
manipulations.



Summary: Human Grasping

• Anticipatory control mechanisms of hand kinematics 
and kinetics play a fundamental role in the control of 
object manipulation. 



• Anticipatory control mechanisms of hand kinematics and 
kinetics play a fundamental role in the control of object 
manipulation. 

• However, online sensory feedback of digit force and 
position appears to be required to compensate for trial-
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• Anticipatory control mechanisms play a fundamental role in the 
control of object manipulation. 

• However, online sensory feedback appears to be required at 
critical time points to compensate for trial-to-trial variability in digit 
placement. 

• Reliance on online sensory feedback is necessary even when prior 
information about object properties is fully available.

• Tasks requiring the retrieval of learned digit position 
suggests an independent sensory memory 
representations from digit forces.



Open questions (1)

• What are the main cortical networks associated with 
the distribution and/or modulation of common neural 
input to simultaneously active hand muscles?
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Open questions (2)

• What is the relative weight of sensory modalities 
involved in learning the relationship between digit 
positions and forces? 

vision of object roll

vision of digit positions 
on object

tactile input

proprioception
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Open questions (3)

• How does the relative weight of each sensory 
modality change as a function of practice?

Vr Vh T P

Trials



Open questions (4)

• How do sensorimotor memories affect learning 
and/or generalizing digit positions and forces to either 
a new tool or different uses of the same tool? 
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